St. Britto Hr. Sec. School - Madurai
12th Maths Weekly Test -1 (Inverse Trigonometric Functions)-Aug 2020
-
-
-
-
-
If the function f(x)sin-1(x2-3), then x belongs to
[-1,1]
[\(\sqrt2\),2]
\(\\ \\ \\ \left[ -2,-\sqrt { 2 } \right] \cup \left[ \sqrt { 2 } ,2 \right] \)
\(\left[ -2,-\sqrt { 2 } \right] \cap \left[ \sqrt { 2 } ,2 \right] \)
-
\({ sin }^{ -1 }\left[ tan\frac { \pi }{ 4 } \right] -{ sin }^{ -1 }\left[ \sqrt { \frac { 3 }{ x } } \right] =\frac { \pi }{ 6 } \).Then x is a root of the equation
x2−x−6=0
x2−x−12=0
x2+x−12=0
x2+x−6=0
-
If \(\\ \\ \\ { cot }^{ -1 }\left( \sqrt { sin\alpha } \right) +{ tan }^{ -1 }\left( \sqrt { sin\alpha } \right) =u\), then cos2u is equal to
tan2\(\alpha\)
0
-1
tan2\(\alpha\)
-
The equation tan-1 x-cot-1 x=tan-1\(\left( \frac { 1 }{ \sqrt { 3 } } \right) \)has
no solution
unique solution
two solutions
infinite number of solutions
-
If sin-1 \(\frac{x}{5}+ cot^{-1}\frac{5}{4}=\frac{\pi}{2}\), then the value of x is
4
5
2
3
-
If \(\alpha ={ tan }^{ -1 }\left( tan\cfrac { 5\pi }{ 4 } \right) \) and \(\beta ={ tan }^{ -1 }\left( -tan\cfrac { 2\pi }{ 3 } \right) \) then
\(4\alpha =3\beta \quad \)
\(3\alpha =4\beta \)
\(\alpha -\beta =\cfrac { 7\pi }{ 12 } \)
none
-
Find all the values of x such that
-10\(\pi\)\(\le x\le\)10\(\pi\) and sin x=0 -
Find the value of
\({ sin }^{ -1 }\left( sin\left( \frac { 2\pi }{ 3 } \right) \right) \) -
Find the value of sin-1\(\left( sin\frac { 5\pi }{ 9 } cos\frac { \pi }{ 9 } +cos\frac { 5\pi }{ 9 } sin\frac { \pi }{ 9 } \right) \).
-
-
Is cos-1(-x)=\(\pi\)-cos−1(x) true? Justify your answer.
-
Find the domain of the following functions :
\(tan^{-1}(\sqrt{9-x^{2}})\)
-
-
Find the domain of
f(x)=sin-1 \((\frac{|x|-2}{3})+cos^{-1}(\frac{1-|x|}{4})\) -
Prove that \({ cos }^{ -1 }\left( \cfrac { 4 }{ 5 } \right) +{ tan }^{ -1 }\left( \cfrac { 3 }{ 5 } \right) ={ tan }^{ -1 }\left( \cfrac { 27 }{ 11 } \right) \)
-
Solve: \({ tan }^{ -1 }\left( \cfrac { x-1 }{ x-2 } \right) +{ tan }^{ -1 }\left( \cfrac { x+1 }{ x+2 } \right) =\cfrac { \pi }{ 4 } \)
-
Solve: cos(tan-1x) = \(sin\left( { cot }^{ -1 }\cfrac { 3 }{ 4 } \right) \)
-
Find the domain of the following
sin−1\(\left(\frac{x^2 + 1}{2x} \right)\)
-
-
For what value of x , the inequality \(\frac{\pi}{2}\)< cos−1(3x − 1) < π
-
Prove that \({ tan }^{ -1 }\sqrt { x } =\cfrac { 1 }{ 2 } { cos }^{ -1 }={ \cfrac { 1 }{ 2 } { cos }^{ -1 }\left( \cfrac { 1-x }{ 1+x } \right) ,x\epsilon \left| 0,1 \right| }\)
-
-
Find the domain of the following functions
(i) f(x) = sin-1(2x - 3)
(ii) f(x) = sin-1x + cos x -
Find (i) cos-1\((-\frac{1}{\sqrt2})\)
ii) cos-1\((cos(-\frac{\pi}{3}))\)
iii) cos-1\((cos(-\frac{7\pi}{6}))\)
-
-
Solve \(tan^{ -1 }\left( \frac { x-1 }{ x-2 } \right) +tan^{ -1 }\left( \frac { x+1 }{ x+2 } \right) =\frac { \pi }{ 4 }\)
-
If \({ tan }^{ -1 }\left( \cfrac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right) =a\) than prove that x2=sin2a
-