St. Britto Hr. Sec. School - Madurai
12th Maths Weekly Test -1 (Applications of Vector Algebra)-Aug 2020
-
-
-
-
-
Consider the vectors \(\vec { a } ,\vec { b } ,\vec { c } ,\vec { d } \) such that \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )\) = \(\vec { 0 } \) Let \({ P }_{ 1 }\) and \({ P }_{ 2 }\) be the planes determined by the pairs of vectors \(\vec { a } ,\vec { b } \) and \(\vec { c } ,\vec { d } \) respectively. Then the angle between \({ P }_{ 1 }\) and \({ P }_{ 2 }\) is
0°
45°
60°
90°
-
If \(\vec { a } =2\hat { i } +3\hat { j } -\hat { k } ,\vec { b } =\hat { i } +2\hat { j } +5\hat { k } ,\vec { c } =3\hat { i } +5\hat { j } -\hat { k } \) then a vector perpendicular to \(\vec { a } \) and lies in the plane containing \(\vec { b } \) and \(\vec { c } \) is
\(-17\hat { i } +21\hat { j } -\hat { 97k } \)
\(17\hat { i } +21\hat { j } -\hat { 123k } \)
\(-17\hat { i } -21\hat { j } +\hat { 197k } \)
\(-17\hat { i } -21\hat { j } -\hat { 97k } \)
-
If the line \(\frac { x-2 }{ 3 } =\frac { y-1 }{ -5 }= \frac { z+2 }{ 2 } \) lies in the plane x + 3y + - αz + β = 0, then (α, β) is
(-5, 5)
(-6, 7)
(5, 5)
(6, -7)
-
The coordinates of the point where the line \(\vec { r } =(6\hat { i } -\hat { j } -3\hat { k } )+t(\hat {- i } +4\hat { j } )\) meets the plane \(\vec { r } =(\hat { i } +\hat { j } -\hat { k } )\) = 3 are
(2,1,0)
(7,1,7)
(1,2,6)
(5,-1,1)
-
The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0
\(\frac { \sqrt { 7 } }{ 2\sqrt { 2 } } \)
\(\frac{7}{2}\)
\(\frac { \sqrt { 7 } }{ 2 } \)
\(\frac { 7 }{ 2\sqrt { 2 } } \)
-
The vector equation \(\vec { r } =(\hat { i } -2\hat { j } -\hat { k } )+t(6\hat { i } -\hat { k) } \) represents a straight line passing through the points
(0,6,1)− and (1,2,1)
(0,6,-1) and (1,4,2)
(1,-2,-1) and (1,4,-2)
(1,-2,-1) and (0,-6,1)
-
Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord.
-
Prove by vector method that an angle in a semi-circle is a right angle.
-
Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle
-
Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area.
-
-
A particle acted on by constant forces \(8\hat i+2\hat j-6\hat k\) and \(6\hat i+2\hat j -2\hat k\) is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces.
-
Using vector method, prove that cos(α − β )=cos α cos β +sin α sin β
-
-
Dot product of a vector with vector \(\overset { \wedge }{ 3i } -5\overset { \wedge }{ k } \), \(2\overset { \wedge }{ i } +7\overset { \wedge }{ j } \) and \(\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ k } \) are respectively -1, 6 and 5. Find the vector.
-
If \(\overset { \rightarrow }{ a } =\overset { \wedge }{ i } -\overset { \wedge }{ j } ,\overset { \rightarrow }{ b } =\overset { \wedge }{ j } -\overset { \wedge }{ k } ,\overset { \rightarrow }{ c } =\overset { \wedge }{ k } -\overset { \wedge }{ i } \) then find \(\left[ \overset { \rightarrow }{ a } -\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ b } -\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } -\overset { \rightarrow }{ a } \right] \)
-
Prove by vector method, that in a right angled triangle the square of the hypotenuse is equal to the sum of the square of the other two sides.
-
Show that the four points whose position vectors are \(6\overset { \wedge }{ i } -7\overset { \wedge }{ j } ,16\overset { \wedge }{ i } -29\overset { \wedge }{ j } -4\overset { \wedge }{ k } ,3\overset { \wedge }{ i } -6\overset { \wedge }{ j } \) are co-planar
-
-
With usual notations, in any triangle ABC, prove the following by vector method.
(i) a2=b2+c2−2bc cos A
(ii) b2=c2+a2−2ca cos B
(iii) c2= a2+b2−2ab cos C -
Find the equation of the plane through the intersection of the planes 2x-3y+ z-4 -0 and x - y + Z + 1 - 0 and perpendicular to the plane x + 2y - 3z + 6 = 0
-
-
Show that the points A, B, C with position vector \(2\overset { \wedge }{ i } -\overset { \wedge }{ j } +\overset { \wedge }{ k } ,\overset { \wedge }{ i } -3\overset { \wedge }{ j } -5\overset { \wedge }{ k } \) and \(3\overset { \wedge }{ i } -4\overset { \wedge }{ j } +4\overset { \wedge }{ k } \) respectively are the vector of a right angled, triangle. Also, find the remaining angles of the triangle.
-
Find the vector and Cartesian equation of the plane passing through the point (1,1, -1) and perpendicular to the planes x + 2y + 3z - 7 = 0 and 2x - 3y + 4z = 0
-
-
With usual notations, in any triangle ABC, prove by vector method that \(\frac { a }{ sinA } =\frac { b }{ sinB }=\frac { c }{ sinc }\)
-
If \(\left| \overset { \rightarrow }{ A } \right| =\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ k } \) and \(\overset { \wedge }{ i } =\overset { \wedge }{ j } -\overset { \wedge }{ k } \) are two given vector, then find a vector B satisfying the equations \(\overset { \rightarrow }{ A } \times \overset { \rightarrow }{ B } \)= \(\overset { \rightarrow }{ C } \) and \(\overset { \rightarrow }{ A } \).\(\overset { \rightarrow }{ B } \)=3
-