St. Britto Hr. Sec. School - Madurai
12th Maths Weekly Test -1 (Applications Of Matrices And Determinants)-Aug 2020
-
-
-
-
-
If A = \(\left[ \begin{matrix} \cos { \theta } & \sin { \theta } \\ -\sin { \theta } & \cos { \theta } \end{matrix} \right] \) and A(adj A) = \(\left[ \begin{matrix} k & 0 \\ 0 & k \end{matrix} \right] \) then adj (AB) is
0
sin θ
cos θ
1
-
If ρ(A) = ρ([A | B]), then the system AX = B of linear equations is
consistent and has a unique solution
consistent
consistent and has infinitely many solution
inconsistent
-
The system of linear equations x + y + z = 6, x + 2y + 3z =14 and 2x + 5y + λz =μ (λ, μ \(\in \) R) is consistent with unique solution if
λ = 8
λ = 8, μ ≠ 36
λ ≠ 8
none
-
The number of solutions of the system of equations 2x+y = 4, x - 2y = 2, 3x + 5y = 6 is
0
1
2
infinitely many
-
Which of the following is not an elementary transformation?
Ri ↔️ Rj
Ri ⟶ 2Ri + Rj
Cj ⟶ Cj + Ci
Ri ⟶ Ri + Cj
-
If A is a non-singular matrix then IA-1|= ______
\(\left| \frac { 1 }{ { A }^{ 2 } } \right| \)
\(\frac { 1 }{ |A^{ 2 }| } \)
\(\left| \frac { 1 }{ A } \right| \)
\(\frac { 1 }{ |A| } \)
-
Find the inverse (if it exists) of the following:
\(\left[ \begin{matrix} -2 & 4 \\ 1 & -3 \end{matrix} \right] \)
-
If adj(A) = \(\left[ \begin{matrix} 2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2 \end{matrix} \right] \), find A.
-
-
Find the matrix A for which A\(\left[ \begin{matrix} 5 & 3 \\ -1 & -2 \end{matrix} \right] =\left[ \begin{matrix} 14 & 7 \\ 7 & 7 \end{matrix} \right] \).
-
Find the inverse (if it exists) of the following:
\(\left[ \begin{matrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{matrix} \right] \)
-
-
Find the rank of the following matrices by row reduction method:
\(\left[ \begin{matrix} 1 \\ \begin{matrix} 2 \\ 5 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} -1 \\ -1 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 3 \\ 7 \end{matrix} \end{matrix}\begin{matrix} 3 \\ \begin{matrix} 4 \\ 11 \end{matrix} \end{matrix} \right] \)
-
Solve the following systems of linear equations by Gaussian elimination method:
2x − 2y + 3z = 2, x + 2y − z = 3,3x − y + 2z = 1 -
Solve: 2x + 3y = 10, x + 6y = 4 using Cramer's rule.
-
Verify that (A-1)T = (AT)-1 for A=\(\left[ \begin{matrix} -2 & -3 \\ 5 & -6 \end{matrix} \right] \).
-
If A = \(\left[ \begin{matrix} 3 & 2 \\ 7 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} -1 & -3 \\ 5 & 2 \end{matrix} \right] \), verify that (AB)-1 = B-1A-1
-
-
Solve the following system of linear equations, using matrix inversion method:
5x + 2y = 3, 3x + 2y = 5.
-
Under what co.nditions will the rank of the matrix \(\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & h-2 & 2 \\ \begin{matrix} 0 \\ 0 \end{matrix} & \begin{matrix} 0 \\ 0 \end{matrix} & \begin{matrix} h+2 \\ 3 \end{matrix} \end{matrix} \right] \) be less than 3?
-
-
Solve the following system:
x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 12z = 0.
-
Solve: \(\frac { 2 }{ x } +\frac { 3 }{ y } +\frac { 10 }{ z } =4,\frac { 4 }{ x } -\frac { 6 }{ y } +\frac { 5 }{ z } =1,\frac { 6 }{ x } +\frac { 9 }{ y } -\frac { 20 }{ z } \)=2
-
-
Show that the matrix \(\left[ \begin{matrix} 3 & 1 & 4 \\ 2 & 0 & -1 \\ 5 & 2 & 1 \end{matrix} \right] \) is non-singular and reduce it to the identity matrix by elementary row transformations.
-
If A = \(\left[ \begin{matrix} 4 & 3 \\ 2 & 5 \end{matrix} \right] \), find x and y such that A2 + xA + yI2 = O2. Hence, find A-1.
-
-
Solve, by Cramer’s rule, the system of equations
x1 - x2 = 3, 2x1 + 3x2 + 4x3 = 17, x2 + 2x3 = 7.