St. Britto Hr. Sec. School - Madurai
12th Maths Monthly Test - 3 (Inverse Trigonometric Functions)-Aug 2020
-
-
-
-
-
-
-
Find the value of sec−1\(\left( -\frac { 2\sqrt { 3 } }{ 3 } \right) \)
-
Solve tan-1 \(\left( \frac { 1-x }{ 1+x } \right) =\frac { 1 }{ 2 } { tan }^{ -1 }\) x for x>0
-
Find the principal value of
cot-1 \((\sqrt{3})\) -
For what value of x , the inequality\(\cfrac { \pi }{ 2 } <{ cos }^{ -1 }(3x-1)<\pi \) holds?
-
Find the value of
\(tan^{-1}(tan\frac{5\pi}{4})\) -
Solve:
\(2{ tan }^{ -1 }(cosx)={ tan }^{ -1 }(2cosec\quad x)\) -
-
Find the value of cos−1\(\left(cos\frac{π}{7}cos\frac{π}{17}-sin\frac{π}{7}sin\frac{π}{17} \right)\).
-
Find the value of
\(cot\left( { sin }^{ -1 }\frac { 3 }{ 5 } +{ sin }^{ -1 }\frac { 4 }{ 5 } \right) \)
-
-
Show that \(cot(sin^{ -1 }x)=\frac { \sqrt { 1-x^{ 2 } } }{ x } -1\le x\le 1\)and x \(\neq \) 0
-
Find all values of x such that
-6\(\pi\le x \le 6\pi\) and cos x -0 -
Find the domain of the following functions : \(tan^{-1}(\sqrt{9-x^{2}})\)
-
Find the value of the expression in terms of x, with the help of a reference triangle. \(tan\left( { sin }^{ -1 }\left( x+\frac { 1 }{ 2 } \right) \right)\)
-
Find the real solutions of the equation
\({ tan }^{ -1 }\sqrt { x(x+1) } +{ sin }^{ -1 }\sqrt { { x }^{ 2 }+x+1 } =\cfrac { \pi }{ 2 } \) -
Find
i) tan−1(\(-\sqrt3\))
ii) tan−1\((tan\frac{3\pi}{5})\)
iii) tan(tan-1(2019))
-
Evaluate \(cos\left[ { cos }^{ -1 }\left( \cfrac { -\sqrt { 3 } }{ 2 } +\cfrac { \pi }{ 6 } \right) \right] \)
-
-
Solve \({ cot }^{ -1 }x-{ xot }^{ -1 }\left( x+2 \right) =\frac { \pi }{ 12 } ,x > 0\)
-
Find the domain of the following functions
\(\frac{1}{2}tan^{-1}(1-x^2)-\frac{\pi}{4}\)
-
-
If cos−1x+cos−1y+cos−1 z = \(\pi \)and 0
2+y2+z2+2xyz=1
-
Find the domain of
f(x)=sin-1\(\left(\frac{| x | − 2}{3} \right)\)+cos-1\(\left(\frac{1-| x | }{4} \right)\) -
Find the value of
\(tan\left[ \frac { 1 }{ 2 } { sin }^{ -1 }\left( \frac { 2a }{ 1+{ a }^{ 2 } } \right) +\frac { 1 }{ 2 } { cos }^{ -1 }\left( \frac { 1-{ a }^{ 2 } }{ 1+{ a }^{ 2 } } \right) \right] \)
-
Find
i) tan-1\( (-\sqrt3)\)
ii) tan-1\((tan\frac{3\pi}{5})\)
iii) tan(tan-1 −(2019))
-
Find (i) cos-1\((-\frac{1}{\sqrt2})\)
ii) cos-1\((cos(-\frac{\pi}{3}))\)
iii) cos-1\((cos(-\frac{7\pi}{6}))\)
-
If \({ tan }^{ -1 }\left( \cfrac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right) =a\) than prove that x2=sin2a
-
Find the domain of the following functions
(i) f(x) = sin-1(2x - 3)
(ii) f(x) = sin-1x + cos x -
If a1, a2, a3, ... an is an arithmetic progression with common difference d, prove that tan \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\quad \left[ tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 1 }{ a }_{ 2 } } \right) +tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 2 }{ a }_{ 3 } } \right) +....tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ n }{ a }_{ n-1 } } \right) \right] =\frac { { a }_{ n }-{ a }_{ 1 } }{ 1+{ a }_{ 1 }{ a }_{ n } } \)
-
If a1, a2, a3 , ... an is an arithmetic progression with common difference d, prove that tan x = \({-b \pm \sqrt{b^2-4ac} \over 2a}\quad \left[ tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 1 }{ a }_{ 2 } } \right) +tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 2 }{ a }_{ 3 } } \right) +....tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ n }{ a }_{ n-1 } } \right) \right] =\frac { { a }_{ n }-{ a }_{ 1 } }{ 1+{ a }_{ 1 }{ a }_{ n } }\)
-
-
Find (i) cos-1 \((-\frac{1}{\sqrt2})\)
ii) cos-1\((cos(-\frac{\pi}{3}))\)
iii) cos-1\((cos(-\frac{7\pi}{6}))\)
-
Provethat \({ tan }^{ -1 }\left( \cfrac { 1-x }{ 1+x } \right) -{ tan }^{ -1 }\left( \cfrac { 1-y }{ 1+y } \right) ={ sin }^{ -1 }\left( \cfrac { y-x }{ \sqrt { 1+{ x }^{ 2 } } .\sqrt { 1+{ y }^{ 2 } } } \right) \\ \)
-
-
Solve \(cos\left( sin^{ -1 }\left( \frac { x }{ \sqrt { 1+{ x }^{ 2 } } } \right) \right) =sin\left\{ cot^{ -1 }\left( \frac { 3 }{ 4 } \right) \right\} \)
-
Find the principal value of
sec-1(−2).