St. Britto Hr. Sec. School - Madurai
12th Maths Monthly Test - 3 ( Applications of Vector Algebra )-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Find the intercepts cut off by the plane \(\vec { r } .(6\hat { i } +4\hat { j } -3\hat { k } )\)=12 on the coordinate axes.
-
Forces of magnit \(5\sqrt { 2 } \) and \(5\sqrt { 2 } \) units acting in the directions \(\hat { 3i } +\hat { 4j } +\hat { 5k } \) and \(\hat { 10i } +\hat { 6j } -\hat { 8k } \) respectively, act on a particle which is displaced from the point with position vector \(\hat { 4i } +\hat { 3j } -\hat { 2k } \) to the point with position vector \(\hat { 6i } +\hat { j } -\hat { 3k } \). Find the work done by the forces.
-
-
If the straight line joining the points (2, 1, 4) and (a−1, 4, −1) is parallel to the line joining the points (0, 2, b −1) and (5, 3, −2) , find the values of a and b.
-
Find the vector and Cartesian equations of the plane passing through the point with position vector \(4\hat { i } +2\hat { j } -3\hat { k } \) and normal to vector \(2\hat { i } -\hat { j } +\hat { k } \)
-
Find the distance of the point (5,-5,-10) from the point of intersection of a straight line passing through the points A(4,1,2) and B(7,5,4) with the plane x-y+z=5
-
With usual notations, in any triangle ABC, prove the following by vector method.
(i) a2=b2+c2−2bc cos A
(ii) b2=c2+a2−2ca cos B
(iii) c2= a2+b2−2ab cos C -
Prove that \(\left[ \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } \right] \)=\(\left[ \overset { \rightarrow }{ a }\ \overset { \rightarrow }{ b }\ \overset { \rightarrow }{ c } \right] \)
-
Find the angle between the lines \(\vec { r } =(\hat { i } +2\hat { j } +4\hat { k } )+t(2\hat { i } +2\hat { j } +\hat { k } )\) and the straight line passing through the points (5, 1, 4) and (9, 2, 12)
-
Find the shortest distance between the two given straight lines \(\vec { r } =(2\hat { i } +3\hat { j } +4\hat { k } )+t(-2\hat { i } +\hat { j } -2\hat { k } )\) and \(\frac { x-3 }{ 2 } =\frac { y }{ -1 } =\frac { z+2 }{ 2 } \)
-
-
Show that the four points (6, -7, 0), (16, -19, -4), (0, 3, -6), (2, -5, 10) lie on a same plane.
-
The vector equation in parametric form of a line is \(\vec { r } =(3\hat { i } -2\hat { j } +6\hat { k } )+t(2\hat { i } -\hat { j } +3\hat { k } )\). Find
(i) the direction cosines of the straight line
(ii) vector equation in non-parametric form of the line
(iii) Cartesian equations of the line.
-
-
Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (0, 1, -5) and parallel to the straight lines \(\vec { r } =(\hat { i } +2\hat { j } -4\hat { k } )+s(\hat { i } +3\hat { j } +6\hat { k } )\) and \(\hat { r } =(\hat { i } -3\hat { j } +5\hat { k } )+t(\hat { i } +\hat { j } -\hat { k } )\)
-
A particle acted upon by constant forces \(\hat { 2j } +\hat { 5j } +\hat { 6k } \) and \(-\hat { i } -\hat { 2j } -\hat { k } \) is displaced from the point (4, −3, −2) to the point (6, 1, −3) . Find the total work done by the forces.
-
Prove that \([\vec { a } \times \vec { b } ,\vec { b } \times \vec { c } ,\vec { c } \times \vec { a } ]\) = \([{ \vec { a } ,\vec { b } ,\vec { c } }]^{ 2 }\)
-
For any four vectors \(\vec { a } ,\vec { b } ,\vec { c } ,\vec { d } \) we have \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )=[\vec { a } ,\vec { b } ,\vec { d } ]\vec { c } -[\vec { a } ,\vec { b } ,\vec { c } ]\vec { d } =[\vec { a } ,\vec { c } ,\vec { d } ]\vec { b } -[\vec { b } ,\vec { c } ,\vec { d } ]\vec { a } \)
-
If the Cartesian equation of a plane is 3x - 4y + 3z = -8, find the vector equation of the plane in the standard form.
-
Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.
-
Find the equation of a straight line passing through the point of intersection of the straight lines \(\vec { r } =(\hat { i } +\hat { 3j } -\hat { k } )+t(2\hat { i } +3\hat { j } +2\hat { k } )\quad \) and \(\frac { x-2 }{ 1 } =\frac { y-4 }{ 2 } =\frac { z+3 }{ 4 } \) and perpendicular to both straight lines.
-
With usual notations, in any triangle ABC, prove by vector method that \(\frac { a }{ sinA } =\frac { b }{ sinB }=\frac { c }{ sinc }\)
-
-
Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points (-1, 2, 0), (2, 2, -1)and parallel to the straight line \(\frac { x-1 }{ 1 } =\frac { 2y+1 }{ 2 } =\frac { z+1 }{ -1 } \)
-
Prove by vector method that sin(α −β )=sinα cosβ −cosα sinβ
-
-
If \(\vec { a } =-2\hat { i } +3\hat { j } -2\hat { k } ,\vec { b } =3\hat { i } -\hat { j } +3\hat { k } ,\vec { c } =2\hat { i } -5\hat { j } +\hat { k } \) find \((\vec { a } \times \vec { b } )\times \vec { c } \) and \((\vec { a } \times \vec { b } )\times \vec { c } \). State whether they are equal.
-
If \(\vec { a } =\vec { i } -\vec { j } ,\vec { b } =\hat { i } -\hat { j } -4\hat { k } ,\vec { c } =3\hat { j } -\hat { k } \) and \(\vec { d } =2\hat { i } +5\hat { j } +\hat { k } \)
(i) \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )=[\vec { a } ,\vec { b } ,\vec { d } ]\vec { c } -[\vec { a } ,\vec { b } ,\vec { c } ]\vec { d } \)
(ii) \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )=[\vec { a } ,\vec { c } ,\vec { d } ]\vec { b } -[\vec { b } ,\vec { c } ,\vec { d } ]\vec { a } \) -
Find the image of the point whose position vector is \(\hat { i } +2\hat { j } +3\hat { k } \) in the plane \(\vec { r } .(\hat { i } +2\hat { j } +4\hat { k } )\) = 38