St. Britto Hr. Sec. School - Madurai
12th Maths Monthly Test - 2 ( Inverse Trigonometric Functions)-Aug 2020
-
-
-
-
-
-
-
-
-
-
Show that \(cot(sin^{ -1 }x)=\frac { \sqrt { 1-x^{ 2 } } }{ x } -1\le x\le 1\)and x \(\neq \) 0
-
Find the value of cos-1\(\left(\frac{1}{2}\right)\)+ sin−1( − 1)
-
Solve:
\(2{ tan }^{ -1 }x={ cos }^{ -1 }\frac { 1-{ a }^{ 2 } }{ 1+{ a }^{ 2 } } -{ cos }^{ -1 }\frac { 1-{ b }^{ 2 } }{ 1+{ b }^{ 2 } } ,a>0,b>0\) -
Prove that \(2{ tan }^{ -1 }\left( \cfrac { 2 }{ 3 } \right) ={ tan }^{ -1 }\left( \cfrac { 12 }{ 5 } \right) \)
-
Prove that \({ tan }^{ -1 }\left( \cfrac { 1 }{ 7 } \right) +{ tan }^{ -1 }\left( \cfrac { 1 }{ 13 } \right) ={ tan }^{ -1 }\left( \cfrac { 2 }{ 9 } \right) \)
-
Find the value of tan−1\(\left(tan\frac{5\pi}{4} \right)\)
-
-
Find the principal value of
cosec-1\((-\sqrt{2})\) -
Solve
\({ sin }^{ -1 }\left(\frac { 5 }{ x }\right) +{ sin }^{ -1 }\left(\frac { 12 }{ x }\right) =\frac { \pi }{ 2 } \)
-
-
Find the principal value of
sin-1\(\left(sin\left(-\frac{π}{3}\right) \right)\) -
If tan-1x+tan-1y+tan-1z =π, show that x+y+z+=xyz
-
Find the period and amplitude of
y=sin 7x -
Simplify
\({ tan }^{ -1 }\left( tan\left( \frac { 3\pi }{ 4 } \right) \right) \)
-
Find the value of sec-1\(\left(-\frac{2\sqrt{3}}{3} \right)\)
-
Evaluate \(sin\left( { cos }^{ -1 }\left( \cfrac { 1 }{ 2 } \right) \right) \)
-
Find the value of
\({ tan }^{ -1 }\left( \sqrt { 3 } \right) -{ sec }^{ -1 }(-2)\) -
Find the value of
\({ sin }^{ -1 }\left( sin\left( \frac { 2\pi }{ 3 } \right) \right) \) -
Find the value of cos−1\(\left(cos\frac{π}{7}cos\frac{π}{17}-sin\frac{π}{7}sin\frac{π}{17} \right)\).
-
If a1, a2, a3 , ... an is an arithmetic progression with common difference d, prove that tan x = \({-b \pm \sqrt{b^2-4ac} \over 2a}\quad \left[ tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 1 }{ a }_{ 2 } } \right) +tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 2 }{ a }_{ 3 } } \right) +....tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ n }{ a }_{ n-1 } } \right) \right] =\frac { { a }_{ n }-{ a }_{ 1 } }{ 1+{ a }_{ 1 }{ a }_{ n } }\)
-
-
Find the principal value of cos−1\(\left( \frac { \sqrt { 3 } }{ 3 } \right) \)
-
Provethat \({ tan }^{ -1 }\left( \cfrac { 1-x }{ 1+x } \right) -{ tan }^{ -1 }\left( \cfrac { 1-y }{ 1+y } \right) ={ sin }^{ -1 }\left( \cfrac { y-x }{ \sqrt { 1+{ x }^{ 2 } } .\sqrt { 1+{ y }^{ 2 } } } \right) \\ \)
-
-
Find the principal value of
sec-1(−2). -
Solve \(cos\left( sin^{ -1 }\left( \frac { x }{ \sqrt { 1+{ x }^{ 2 } } } \right) \right) =sin\left\{ cot^{ -1 }\left( \frac { 3 }{ 4 } \right) \right\}\)
-
Write thefunction\(f(x)={ tan }^{ -1 }\sqrt { \cfrac { a-x }{ a+x } } -a<x<a\) in the simplest form
-
Find (i) cos-1 \((-\frac{1}{\sqrt2})\)
ii) cos-1\((cos(-\frac{\pi}{3}))\)
iii) cos-1\((cos(-\frac{7\pi}{6}))\)
-
If \({ tan }^{ -1 }\left( \cfrac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right) =a\) than prove that x2=sin2a
-
Find the principal value of
cosec-1 (−1) -
Find the principal value of cos-1\(\left( \frac { \sqrt { 3 } }{ 3 } \right)\)
-
Solve \(tan^{ -1 }\left( \frac { x-1 }{ x-2 } \right) +tan^{ -1 }\left( \frac { x+1 }{ x+2 } \right) =\frac { \pi }{ 4 } \)