St. Britto Hr. Sec. School - Madurai
12th Maths Monthly Test - 2 ( Applications of Vector Algebra )-Aug 2020
-
-
-
-
-
-
-
-
Find the point of intersection of the line x - 1 = \(\frac { y }{ 2 } \) = z + 1 with the plane 2x - y + 2z = 2. Also, find the angle between the line and the plane.
-
Show that the lines \(\frac { x-1 }{ 4 } =\frac { 2-y }{ 6 } =\frac { z-4 }{ 12 } \) and \(\frac { x-3 }{ -2 } =\frac { y-3 }{ 3 } =\frac { 5-z }{ 6 } \) are parallel.
-
Forces of magnit \(5\sqrt { 2 } \) and \(5\sqrt { 2 } \) units acting in the directions \(\hat { 3i } +\hat { 4j } +\hat { 5k } \) and \(\hat { 10i } +\hat { 6j } -\hat { 8k } \) respectively, act on a particle which is displaced from the point with position vector \(\hat { 4i } +\hat { 3j } -\hat { 2k } \) to the point with position vector \(\hat { 6i } +\hat { j } -\hat { 3k } \). Find the work done by the forces.
-
Find the direction cosines of the straight line passing through the points (5,6,7) and (7,9,13) . Also, find the parametric form of vector equation and Cartesian equations of the straight line passing through two given points.
-
Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2,1), (9,3,6) and perpendicular to the plane 2x + 6y + 6z = 9
-
Find the length of the perpendicular from the point (1, -2, 3) to the plane x - y + z =5.
-
Find the direction cosines and length of the perpendicular from the origin to the plane \(\vec { r } .(3\hat { i } -4\hat { j } +12\hat { k } )=5\)
-
Find the vector and Cartesian equations of the plane passing through the point with position vector \(2\hat { i } +6\hat { j } +3\hat { k } \) and normal to the vector \(\hat { i } +3\hat { j } +5\hat { k } \)
-
Find the parametric form of vector equation of a line passing through a point (2, -1, 3) and parallel to line \({ \overset { \rightarrow }{ r } }=\left( \overset { \wedge }{ i } +\overset { \wedge }{ j } \right) +t\left( 2\overset { \wedge }{ i } +\overset { \wedge }{ j } -2\overset { \wedge }{ k } \right) \)
-
If \(\hat { 2i } -\hat { j } +\hat { 3k } ,\hat { 3i } +\hat { 2j } +\hat { k } ,\hat { i } +\hat { mj } +\hat { 4k } \) are coplanar, find the value of m.
-
Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord.
-
If the straight lines \(\frac { x-1 }{ 1 } =\frac { y-2 }{ 1 } =\frac { z-3 }{ { m }^{ 2 } } \) and \(\frac { x-3 }{ 1 } =\frac { y-2 }{ { m }^{ 2 } } =\frac { z-1 }{ 2 } \) are coplanar, find the distinct real values of m.
-
If the straight lines \(\frac { x-5 }{ 5m+2 } =\frac { 2-y }{ 5 } =\frac { 1-z }{ -1 } \) and \(x=\frac { 2y+1 }{ 4m } =\frac { 1-z }{ -3 } \) are perpendicular to each other, find the value of m.
-
Find the vector and Cartesian equations of the plane passing through the point with position vector \(4\hat { i } +2\hat { j } -3\hat { k } \) and normal to vector \(2\hat { i } -\hat { j } +\hat { k } \)
-
-
Find the angle between the line \(\vec { r } =(2\hat { i } -\hat { j } +\hat { k } )+t(\hat { i } +2\hat { j } -2\hat { k } )\) and the plane \(\vec { r } =(6\hat { i } +3\hat { j } +2\hat { k } )=8\)
-
Find the angle between the following lines.
\(\frac { x+4 }{ 3 } =\frac { y-7 }{ 4 } =\frac { z+5 }{ 5 } \), \(\vec { r } =4\hat { k } +t(2\hat { i } +\hat { j } +\hat { k } )\)
-
-
Find the direction cosines of the normal to the plane 12x + 3y − 4z = 65 . Also, find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin.
-
Find the volume of the parallelepiped whose coterminous edges are represented by the vectors \(-6\hat { i } +14\hat { j } +10\hat { k } ,14\hat { i } -10\hat { j } -6\hat { k } \) and \(2\hat { i } +4\hat { j } -2\hat { k } \)
-
Find the distance between the parallel planes x+2y-2z=0 and 2x+4y-4z+5=0
-
Find the equation of a straight line passing through the point of intersection of the straight lines \(\vec { r } =(\hat { i } +\hat { 3j } -\hat { k } )+t(2\hat { i } +3\hat { j } +2\hat { k } )\quad \) and \(\frac { x-2 }{ 1 } =\frac { y-4 }{ 2 } =\frac { z+3 }{ 4 } \) and perpendicular to both straight lines.
-
If \(\vec { a } =-2\hat { i } +3\hat { j } -2\hat { k } ,\vec { b } =3\hat { i } -\hat { j } +3\hat { k } ,\vec { c } =2\hat { i } -5\hat { j } +\hat { k } \) find \((\vec { a } \times \vec { b } )\times \vec { c } \) and \((\vec { a } \times \vec { b } )\times \vec { c } \). State whether they are equal.
-
-
Find the point of intersection of the lines \(\frac { x-1 }{ 2 } =\frac { y-2 }{ 3 } =\frac { z-3 }{ 4 } \) and \(\frac { x-4 }{ 5 } =\frac { y-1 }{ 2 } =z\)
-
Find the image of the point whose position vector is \(\hat { i } +2\hat { j } +3\hat { k } \) in the plane \(\vec { r } .(\hat { i } +2\hat { j } +4\hat { k } )\) = 38
-
-
By vector method, prove that cos(α + β) = cos α cos β - sin α sin β
-
If \(\left| \overset { \rightarrow }{ A } \right| =\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ k } \) and \(\overset { \wedge }{ i } =\overset { \wedge }{ j } -\overset { \wedge }{ k } \) are two given vector, then find a vector B satisfying the equations \(\overset { \rightarrow }{ A } \times \overset { \rightarrow }{ B } \)= \(\overset { \rightarrow }{ C } \) and \(\overset { \rightarrow }{ A } \).\(\overset { \rightarrow }{ B } \)=3
-
Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points (-1, 2, 0), (2, 2, -1)and parallel to the straight line \(\frac { x-1 }{ 1 } =\frac { 2y+1 }{ 2 } =\frac { z+1 }{ -1 } \)
-
With usual notations, in any triangle ABC, prove by vector method that \(\frac { a }{ sinA } =\frac { b }{ sinB }=\frac { c }{ sinc }\)
-
Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.
-
Find the vector equation in parametric form and Cartesian equations of a straight passing through the points (-5, 7, 14) and (13, -5, 2). Find the point where the straight line crosses the xy - plane.
-
Show that the points A, B, C with position vector \(2\overset { \wedge }{ i } -\overset { \wedge }{ j } +\overset { \wedge }{ k } ,\overset { \wedge }{ i } -3\overset { \wedge }{ j } -5\overset { \wedge }{ k } \) and \(3\overset { \wedge }{ i } -4\overset { \wedge }{ j } +4\overset { \wedge }{ k } \) respectively are the vector of a right angled, triangle. Also, find the remaining angles of the triangle.