St. Britto Hr. Sec. School - Madurai
12th Maths Monthly Test -1 (Applications Of Matrices And Determinants)-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
If A is a 3 × 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT =
A
B
I
BT
-
If A = \(\left[ \begin{matrix} 1 & \tan { \frac { \theta }{ 2 } } \\ -\tan { \frac { \theta }{ 2 } } & 1 \end{matrix} \right] \) and AB = I , then B =
\(\left( \cos ^{ 2 }{ \frac { \theta }{ 2 } } \right) A\)
\(\left( \cos ^{ 2 }{ \frac { \theta }{ 2 } } \right) { A }^{ T }\)
\(\left( \cos ^{ 2 }{ \theta } \right) I\)
(Sin2\(\frac { \theta }{ 2 } \))A
-
In the non - homogeneous system of equations with 3 unknowns if \(\rho\)(A) = \(\rho\)([AIB]) = 2, then the system has _______
unique solution
one parameter family of solution
two parameter family of solutions
in consistent
-
In the system of equations with 3 unknowns, if Δ = 0, and one of Δx, Δy of Δz is non zero then the system is ______
Consistent
inconsistent
consistent with one parameter family of solutions
consistent with two parameter family of solutions
-
A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is Rs.150. The cost of the two dosai, two idlies and four vadais is Rs.200. The cost of five dosai, four idlies and two vadais is Rs.250. The family has Rs.350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had ?
-
If A = \(\left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \) is non-singular, find A−1.
-
If F(α) = \(\left[ \begin{matrix} \cos { \alpha } & 0 & \sin { \alpha } \\ 0 & 1 & 0 \\ -\sin { \alpha } & 0 & \cos { \alpha } \end{matrix} \right] \), show that [F(α)]-1 = F(-α).
-
Find the rank of the following matrices by minor method:
\(\left[ \begin{matrix} 1 \\ 3 \end{matrix}\begin{matrix} -2 \\ -6 \end{matrix}\begin{matrix} -1 \\ -3 \end{matrix}\begin{matrix} 0 \\ 1 \end{matrix} \right] \) -
If A is symmetric, prove that then adj Ais also symmetric.
-
Solve the following systems of linear equations by Cramer’s rule:
\(\frac { 3 }{ x } \) + 2y = 12, \(\frac { 2 }{ x } \) + 3y = 13 -
Test for consistency and if possible, solve the following systems of equations by rank method.
2x + 2y + z = 5, x - y + z = 1, 3x + y + 2z = 4 -
Reduce the matrix \(\left[ \begin{matrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{matrix} \right] \) to a row-echelon form.
-
Find the matrix A for which A\(\left[ \begin{matrix} 5 & 3 \\ -1 & -2 \end{matrix} \right] =\left[ \begin{matrix} 14 & 7 \\ 7 & 7 \end{matrix} \right] \).
-
Find the inverse (if it exists) of the following:
\(\left[ \begin{matrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{matrix} \right] \) -
For any 2 x 2 matrix, if A (adj A) =\(\left[ \begin{matrix} 10 & 0 \\ 0 & 10 \end{matrix} \right] \) then find |A|.
-
A = \(\left[ \begin{matrix} 1 & \tan { x } \\ -\tan { x } & 1 \end{matrix} \right] \), show that ATA-1 = \(\left[ \begin{matrix} \cos { 2x } & -\sin { 2x } \\ \sin { 2x } & \cos { 2x } \end{matrix} \right] \)
-
-
Find the rank of the matrix A =\(\left[ \begin{matrix} 4 \\ 7 \end{matrix}\begin{matrix} 5 \\ -3 \end{matrix}\begin{matrix} -6 \\ 0 \end{matrix}\begin{matrix} 1 \\ 8 \end{matrix} \right] \).
-
A boy is walking along the path y = ax2 + bx + c through the points (−6, 8),(−2, −12) , and (3, 8) . He wants to meet his friend at P(7,60) . Will he meet his friend? (Use Gaussian elimination method.)
-
-
-
Find the rank of the following matrices by minor method:
\(\left[ \begin{matrix} 1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1 \end{matrix} \right] \) -
Given A = \(\left[ \begin{matrix} 1 & -1 \\ 2 & 0 \end{matrix} \right] \), B = \(\left[ \begin{matrix} 3 & -2 \\ 1 & 1 \end{matrix} \right] \) and C = \(\left[ \begin{matrix} 1 & 1 \\ 2 & 2 \end{matrix} \right] \), find a matrix X such that AXB = C.
-
-
If A = \(\frac { 1 }{ 9 } \left[ \begin{matrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{matrix} \right] \), prove that A−1 = AT.
-
Find the inverse of the non-singular matrix A = \(\left[ \begin{matrix} 0 & 5 \\ -1 & 6 \end{matrix} \right] \), by Gauss-Jordan method.
-
Solve: 2x + 3y = 10, x + 6y = 4 using Cramer's rule.
-
Test for consistency of the following system of linear equations and if possible solve:
x - y + z = -9, 2x - 2y + 2z = -18, 3x - 3y + 3z + 27 = 0.
-
If A = \(\left[ \begin{matrix} 3 & 2 \\ 7 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} -1 & -3 \\ 5 & 2 \end{matrix} \right] \), verify that (AB)-1 = B-1A-1
-
Find the rank of the matrix \(\left[ \begin{matrix} 2 \\ \begin{matrix} -3 \\ 6 \end{matrix} \end{matrix}\begin{matrix} -2 \\ \begin{matrix} 4 \\ 2 \end{matrix} \end{matrix}\begin{matrix} 4 \\ \begin{matrix} -2 \\ -1 \end{matrix} \end{matrix}\begin{matrix} 3 \\ \begin{matrix} -1 \\ 7 \end{matrix} \end{matrix} \right] \) by reducing it to an echelon form.
-
Solve the system of linear equations, by Gaussian elimination method 4x + 3y + 6z = 25, x + 5y + 7z = 13, 2x + 9y + z = 1.
-
Verify (AB)-1 =B-1 A-1 for A=\(\left[ \begin{matrix} 2 & 1 \\ 5 & 3 \end{matrix} \right] \) and B=\(\left[ \begin{matrix} 4 & 5 \\ 3 & 4 \end{matrix} \right] \).
-
-
Reduce the matrix \(\left[ \begin{matrix} 0 \\ -1 \\ 4 \end{matrix}\begin{matrix} 3 \\ 0 \\ 2 \end{matrix}\begin{matrix} 1 \\ 2 \\ 0 \end{matrix}\begin{matrix} 6 \\ 5 \\ 0 \end{matrix} \right] \) to row-echelon form.
-
Solve 2x - 3y = 7, 4x - 6y = 14 by Gaussian Jordan method.
-
-
-
Solve the following system:
x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 12z = 0.
-
Solve: x + y + 3z = 4, 2x + 2y + 6z = 7, 2x + y + z = 10.
-
-
Solve the following system of linear equations, using matrix inversion method:
5x + 2y = 3, 3x + 2y = 5.
-
Using determinants; find the quadratic defined by f(x) =ax2 + bx + c, if f(1) =0, f(2) =-2 and f(3) = -6.
-
Find the condition on a, b and c so that the following system of linear equations has one parameter family of solutions: x + y + z = a, x + 2y + 3z = b, 3x + 5y + 7z = c.
-
-
Investigate for what values of λ and μ the system of linear equations x + 2y + z = 7, x + y + λz = μ, x + 3y − 5z = 5 has
(i) no solution
(ii) a unique solution
(iii) an infinite number of solutions
-
Test for consistency of the following system of linear equations and if possible solve:
x + 2y - z = 3, 3x - y + 2z = 1, x - 2y + 3z = 3, x - y + z + 1 = 0
-
-
If A = \(\left[ \begin{matrix} 8 & -6 & 2 \\ -6 & 7 & 4 \\ 2 & -4 & 3 \end{matrix} \right] \), verify thatA(adj A)=(adj A)A = |A| I3.
-
By using Gaussian elimination method, balance the chemical reaction equation: C5H8 + O2 u27f6 CO2 + H2O. (The above is the reaction that is taking place in the burning of organic compound called isoprene.)