St. Britto Hr. Sec. School - Madurai
11th Maths Weekly Test -1 (Vector Algebra)-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
If (a,a+b,a+b+c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c.
-
Let A and B be two points with position vectors 2\(\overrightarrow{a}\)+ 4\(\overrightarrow{b}\) and 2\(\overrightarrow{a}\) −8\(\overrightarrow{b}\). Find the position vectors of the points which divide the line segment joining A and B in the ratio 1:3 internally and externally.
-
Shown that the points with position vectors \(\vec { a } -2\vec { b } +3\vec { c } -2\vec { a } +3\vec { b } +2\vec { c } \) and \(-8\vec { a } +13\vec { b } \) are collinear.
-
If \(\overrightarrow{a},\overrightarrow{b}\)are unit vectors and \(\theta\) is the angle between them, show that \(cos {\theta \over 2}={1\over2}|\overrightarrow{a}+\overrightarrow{b}|\)
-
-
Find the projection of the vector \(\hat{i}+3\hat{j}+7\hat{k}\) on the vector\(2\hat{i}+6\hat{j}+3\hat{k}\).
-
If \(\overrightarrow{a},\overrightarrow{b}\)are unit vectors and \(\theta\) is the angle between them, show that \(tan {\theta \over 2}={|\overrightarrow{a}-\overrightarrow{b}|\over|\overrightarrow{a}+\overrightarrow{b}|}\)
-
-
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians.
-
If G is the centroid of a triangle ABC, prove that \(\overrightarrow{GA}\)+\(\overrightarrow{GB}\) +\(\overrightarrow{GC}\) = \(\overrightarrow{0}\).