St. Britto Hr. Sec. School - Madurai
11th Maths Weekly Test -1( Differential Calculus - Limits and Continuity )-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
Compute\(lim_{x\rightarrow-2}(-{3\over 2}x)\)
-
For what value of k is the function \(f\left( x \right) =\begin{cases} \frac { \sin { 5x } }{ 3x } \quad if\quad x\neq 0 \\ k,\quad \quad \quad if\quad x=0 \end{cases}\) is continuous at x = 0.
-
Find \(\underset { x\rightarrow 1 }{ lim } \) fix), if \(f(x)=\{ \begin{matrix} { x }^{ 2 }-1 & x\le 1 \\ -{ x }^{ 2 }-1 & x>1 \end{matrix}\)
-
-
Evaluate the following limits :
\(\underset{x\rightarrow 1}{lim}{\sqrt{x}-x^2\over 1-\sqrt{x}}\) -
\(It\quad \lim _{ x\rightarrow a }{ \frac { { x }^{ 9 }-{ a }^{ 9 } }{ x-a } } =9,\)find all possible values of a.
-
-
Calculate \(lim_{x \rightarrow \infty}{1-x^3\over 3x+2}\)
-
Let f(x)=\(\begin{cases} 0, & if\quad x<0 \\ { x }^{ 2 }, & if\quad 0\le x\le 2 \\ 4, & if\quad x\ge 2 \end{cases}\).Graph the function. Show that f(x) continuous on\((-\infty,\infty)\).
-
Do the limits of following functions exist as x\(\rightarrow 0?\) State reasons for your answer.\(sin|x|\over x\)
-
Evaluate \(\lim _{ x\rightarrow \sqrt { 2 } }{ \frac { { x }^{ 9 }-3{ x }^{ 8 }+{ x }^{ 6 }-9{ x }^{ 4 }-4{ x }^{ 2 }-16x+84 }{ { x }^{ 5 }-3{ x }^{ 4 }-4x+12 } } \)
-
A function f is defined as follows :
f(x)=\(\begin{cases} 0, & for\ x<0; \\ x, & for\ 0\le x<1; \\ -{ x }^{ 2 }+4x-2, & for\ 1\le x<3; \\ 4-x, & for\ x\ge 3 \end{cases}\)
Is the function continuous? -
Evaluate the following limits :
\(\underset{x\rightarrow0}{lim}{\sqrt{1-x}-1\over x^2}\) -
Evaluate the following limits :\(\underset{x \rightarrow \infty}{lim}\left({x^2-2x+1\over x^2-4x+2}\right)^x\)