St. Britto Hr. Sec. School - Madurai
11th Maths Monthly Test- 1 (Vector Algebra ) -Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
If \(\vec{a}=\hat{i}+2\hat{j}+3\hat{k}\) , \(\vec{b}=-\hat{j}+4\hat{k}\)and \(\vec{c}=\hat{i}-2\hat{j}+\hat{k}\). Find\((\vec{a}+\vec{b}).\vec{c}\) and \(\vec{c}.(\vec{a}+\vec{b})\) Are they equal?
-
Find the direction cosines of a vector whose direction ratios are 1,2,3
-
Verify whether the following ratios are direction cosines of some vector or not\({4\over 3}.0,{3\over 4}\)
-
Find the direction cosines and direction ratios for the following vectors.3\(\hat{i}\)-3\(\hat{k}\)+4\(\hat{j}\)
-
Find the direction cosines of a vector whose direction ratios are 3,-1,3
-
Examine whether the vectors \(\hat { i } +3\hat { j } +\hat { k } ,2\hat { i } -\hat { j } -\hat { k } \) and \(7\hat { j } +5\hat { k } \) are coplanar
-
If \(|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|\) prove that \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are perpendicular.
-
Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
-
Find a point whose position vector has magnitude 5 and parallel to the vector 4\(\hat{i}\)- 3\(\hat{j}\)+10\(\hat{k}\).
-
-
If \(|\overrightarrow{a}|=5,|\overrightarrow{b}|=6,|\overrightarrow{c}|=7\) and \(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} =\overrightarrow{0}\) ,find \(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\).
-
Show that the points whose positions vectors \(4\hat { i } -3\hat { j } +\hat { k } \) ,\(2\hat { i } -4\hat { j } +5\hat { k } \) ,\(\hat { i } -\hat { j } \) from a right angled triangle.
-
-
If \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\)are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is \({1\over 2}|\overrightarrow{a}\times \overrightarrow{b}+ \overrightarrow{b}+\overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}|\) .Also deduce the condition for collinearity of the points A, B, and C.
-
Find the area of a triangle having the points A(1,0,0),B(0,1,0), and C(0,0,1) A BC as its vertices.
-
Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third side whose length is half of the length of the third side.
-
Find the unit vectors parallel to the sum of \(3\vec { i } -5\vec { j } +8\vec { k } \) and \(-2\vec { i } -2\vec { k } \)
-
If \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are vectors represented by two adjacent sides of a regular hexagon, then find the vectors represented by other sides.
-
If D is the midpoint of the side BC of a triangle ABC, prove that \(\overrightarrow{AB}\) + \(\overrightarrow{AC}\) = 2\(\overrightarrow{AD}\) .
-
Show that the points (2, - 1, 3), (4, 3, 1) and (3, 1, 2) are collinear.
-
If \(\overrightarrow{a},\overrightarrow{b}\)are unit vectors and \(\theta\) is the angle between them, show that \(tan {\theta \over 2}={|\overrightarrow{a}-\overrightarrow{b}|\over|\overrightarrow{a}+\overrightarrow{b}|}\)
-
-
Prove that the points whose position vectors \(2\hat{i}+4\hat{j}+3\hat{k},4\hat{i}+\hat{j}+9\hat{k}\) and \(10\hat{i}-\hat{j}+6\hat{k}\) form a right angled triangle.
-
Find the value or values of m for which m (\(\hat{i}+\hat{j}+\hat{k}\)) is a unit vector
-
-
The position vectors of the points P, Q, R, S are \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\),2 \(\hat{i}\)+5\(\hat{j}\),3\(\hat{i}\)+2\(\hat{j}\)-3\(\hat{k}\), and \(\hat{i}\)-6\(\hat{j}\)-\(\hat{k}\), respectively. Prove that the line PQ and RS are parallel.
-
If G is the centroid of a triangle ABC, prove that \(\overrightarrow{GA}\)+\(\overrightarrow{GB}\) +\(\overrightarrow{GC}\) = \(\overrightarrow{0}\).
-
Let ABC be a triangle,\(\overrightarrow{BC}=\overrightarrow{a},\overrightarrow{CA}=\overrightarrow{b}\) and \(\overrightarrow{AB}=\overrightarrow{c}\). Then prove that \(\overrightarrow {a}\times \overrightarrow {b}=\overrightarrow {b}\times \overrightarrow {c}=\overrightarrow {c}\times \overrightarrow {a}.\)
-
Let A, Band C represent the angles of a \(\triangle\)ABC and a, b, c represent the lengths of the sides opposite to them, then prove that a = b cos C + c cos B (Projection formula)