St. Britto Hr. Sec. School - Madurai
11th Maths Monthly Test- 1 (Trigonometry) -Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Find the values of sin 72°.
-
Show that tan (45o + A) = \(\frac { 1+\tan { A } }{ 1-\tan { A } } \)
-
Express each of the following product as a sum or difference. sin 40° cos 30°.
-
Eliminate θ from a cosθ = b and c sin θ = d, where a, b, c, d are constants.
-
Prove that sin (n + 1) \(\theta\) sin (n - 1) \(\theta\) + cos (n + 1) \(\theta\) cos (n - 1) \(\theta\) = cos 2 \(\theta\), \(n\epsilon Z\)
-
Prove that \(cos\frac { B-C }{ 2 }= \frac { b+c }{ a } sin\frac { A }{ 2 } \)
-
Prove that sin 75o - sin 15o = cos 105o + cos 15o
-
Let \(\alpha,\beta\) be such that \(\pi<\alpha-\beta<3\pi.\)If \(sin\alpha+sin\beta=-\frac{21}{65}\ and\ cos\alpha+cos\beta=-\frac{27}{65}\) then find the value of \(cos\frac{\alpha-\beta}{2}\) is
-
Prove \(\frac { cosA }{ a } +\frac { cosB }{ b } +\frac { cosC }{ c } =\frac { { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } }{ 2abc } \)
-
-
In a \(\triangle \)if cos C=\(\frac { sinA }{ 2sinB } \)show that the triangle is isosceles.
-
Find x such that -\(\pi\) ≤ x ≤ \(\pi\) and cos 2x = sin x.
-
-
If sin A = \(\frac{3}{5}\) and cos B = \(\frac{9}{41}\), 0 < A < \(\frac{\pi}{2}\), 0 < B < \(\frac{\pi}{2}\). Find the value of sin (A + B)
-
A rope of length 12 m is given. find the largest area of the triangle formed by this rope and find the dimensions of the triangle So formed
-
Prove that \(\tan ^{ -1 }{ \left( \frac { x }{ \sqrt { { { a }^{ 2 }-{ x }^{ 2 } } } } \right) } =\sin ^{ -1 }{ \left( \frac { x }{ a } \right) } \)
-
Solve: tan2θ+(1-\(\sqrt3\))tanθ-\(\sqrt3\)=0
-
Prove that \(\cos { 5x } =16\cos ^{ 5 }{ x } -20\cos ^{ 3 }{ x } +5\cos { x } \)
-
Express each of the following as a sum or difference. cos 5\(\theta\) cos 2\(\theta\)
-
Two Navy helicopters A and B are flying over the bay of Bengal at same altitude from the sea level to search a missing boat,pilots of both the helicopters sight the boat at the same while they are apart 10 km from each other, if the distance of the boat from A is 6 km and if the line segments AB subtends 600 at the boat, find the distance of the boat from B
-
-
In \(\triangle\)ABC, Prove the following
\(\frac { asin(B-C) }{ { b }^{ 2 }-{ c }^{ 2 } } =\frac { bsin(C-A) }{ { c }^{ 2 }-{ a }^{ 2 } } =\frac { csin(A-B) }{ { a }^{ 2 }-{ b }^{ 2 } } \) -
If A+B+C=\(\frac { \pi }{ 2 } \),prove the following sin2A+sin2B+sin2C=4 cosA cosB cos C
-
-
In \(\triangle\)ABC, if a = \(\sqrt { 3 } -1\), b =\(\sqrt { 3 } +1\) and 0 Find the other side and the other two angles
-
In a triangle ABC, prove that \({a^2+b^2\over a^2+c^2}={1+cos(A-B)cos C\over 1+cos (A-C)cos B}\)
-
Solve \(\sqrt{3}tan^2\theta+(\sqrt{3}-1)tan\theta-1=0\)
-
Find the value of sin25° + sin210° + sin215° + ..... + sin290° is
-
Find the values of \(\tan { \left( \alpha +\beta \right) } \), given that \(\cot { \alpha } =\frac { 1 }{ 2 } ,\alpha \epsilon \left( \pi ,\frac { 3\pi }{ 2 } \right) and\quad \sec { \beta } =-\frac { 5 }{ 3 } ,\beta \epsilon \left( \frac { \pi }{ 2 } ,\pi \right) \)