St. Britto Hr. Sec. School - Madurai
11th Maths Monthly Test -1 (Matrices and Determinants)-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
Using properties of determinant, show that\(\triangle =\left| \begin{matrix} { cosec }^{ 2 }\theta & -{ cot }^{ 2 }\theta & 1 \\ { cot }^{ 2 }\theta & -cose{ c }^{ 2 }\theta & -1 \\ 42 & 40 & 2 \end{matrix} \right| =0\)
-
Find the area of the triangle whose vertices are (- 2, - 3), (3, 2), and (- 1, - 8)
-
Solve the following problems by using Factor Theorem :
Show that \(\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix}=8abc\) -
If A is a skew-symmetric matrix of odd order n, then |A| =0.
-
Evaluate :\(\begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix}\)
-
Prove that \(\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix}=4a^2b^2c^2\)
-
If A=\(\begin{bmatrix} 4 & 2 \\ -1 & x \end{bmatrix}\) and such that (A- 2I)(A-3I)=0, find the value of x.
-
If the area of the triangle with vertices (- 3, 0), (3, 0) and (0, k) is 9 square units, find the values of k.
-
Prove that \(LHS=\left| \begin{matrix} -{ a }^{ 2 } & ab & ac \\ ab & -{ b }^{ 2 } & bc \\ ac & bc & -{ c }^{ 2 } \end{matrix} \right| ={ 4a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 }\)
-
Identify the singular and non-singular matrices:\(\begin{bmatrix} 0&a-b &k \\ b-a & 0 &5 \\ -k & -5 & 0 \end{bmatrix}\)
-
If A =\(\begin{bmatrix} 4 & 6 & 2 \\ 0 & 1 & 5 \\ 0 & 3 & 2 \end{bmatrix}\) and B= \(\begin{bmatrix} 0 & 1 & -1 \\ 3 & -1 & 4 \\ -1 & 2 & 1 \end{bmatrix}\)
verify(A+B)T=AT+BT -
If A is a 3 × 4 matrix and B is a matrix such that both ATB and BAT are defined, what is the order of the matrix B?
-
-
Identify the singular and non-singular matrices:\(\begin{bmatrix} 1&2 &3 \\ 4 & 5 &6 \\ 7 & 8 & 9 \end{bmatrix}\)
-
If a, b, c are all positive, and are pth, qth and rth terms of a G.P., show that \(\begin{vmatrix} log a & p & 1 \\ log b & q & 1 \\ log c & r & 1 \end{vmatrix}=0.\)
-
-
Using factor method show that \(\left| \begin{matrix} 1 & a & { a }^{ 2 } \\ 1 & b & { b }^{ 2 } \\ 1 & c & { c }^{ 2 } \end{matrix} \right| \) = (a - b) (b - c) (c - a).
-
If A = \(\begin{bmatrix} {1\over 2}&\alpha \\ 0 & {1\over2} \end{bmatrix}\) ,prove that \(\sum^n_{k=1}det(A^k)={1\over3}(1-{1\over 4^n}).\)
-
If AB=A and BA=B, then show that A2=A and B2=B.
-
If A =\(\begin{bmatrix} 4 & 6 & 2 \\ 0 & 1 & 5 \\ 0 & 3 & 2 \end{bmatrix}\) and B= \(\begin{bmatrix} 0 & 1 & -1 \\ 3 & -1 & 4 \\ -1 & 2 & 1 \end{bmatrix}\)
verify(A-B)T=AT-BT -
If A=\(\left| \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right| \) find x and y such that (xI +yA)2 =A
-
Without expanding, evaluate the following determinants:
\(\begin{vmatrix} x+y& y+z &z+x \\ z & x & y \\ 1 & 1 &1 \end{vmatrix}\) -
-
Prove that \(\begin{vmatrix} 1 &x^2 &x^3 \\ 1 & y^2 &y^3 \\1 &z^2 &z^3 \end{vmatrix}\) =(x-y)(y-z)(z-x)(xy+yz+zx).
-
Factorise \(\left| \begin{matrix} a & b & c \\ { a }^{ 2 } & { b }^{ 2 } & { c }^{ 2 } \\ bc & ca & ab \end{matrix} \right| \) .
-
-
If \(A=\left[ \begin{matrix} 1 & -1 \\ 2 & -1 \end{matrix} \right] \) and \(B=\left[ \begin{matrix} x & 1 \\ y & -1 \end{matrix} \right] \) and (A + B)2=A2 + B2, find X and.
-
Express the matrix A=\(\begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}\)as the sum of a symmetric and a skew-symmetric matrices.
-
Solve : \(X+2Y=\left[ \begin{matrix} 4 & 6 \\ -8 & 10 \end{matrix} \right] \) ;\(X-Y=\left[ \begin{matrix} 4 & 6 \\ -8 & 10 \end{matrix} \right] \)
-
If \(A=\left[ \begin{matrix} 3 & -2 \\ 4 & -2 \end{matrix} \right] \),find k so that A2 = kA - 2I.
-
Without expanding, evaluate the following determinants:
\(\begin{vmatrix} 2& 3 &4 \\ 5 & 6 & 8 \\ 6x & 9x &12x \end{vmatrix}\) -
Prove that \(\left| \begin{matrix} { a }^{ 2 }+\lambda & ab & ac \\ ab & { b }^{ 2 }+\lambda & bc \\ ac & bc & { c }^{ 2 }+\lambda \end{matrix} \right| ={ \lambda }^{ 2 }\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+\lambda \right) \)