St. Britto Hr. Sec. School - Madurai
11th Maths Model Exam-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Examine the continuity of the following:\(|x-2|\over |x+1|\)
-
Find seven numbers A1, A2, ... , A7 so that the sequence 4, A1, A2, ... , A7, 7 is in arithmetic progression and also 4 numbers G1, G2, G3, G4 so that the sequence 12, G1, G2, G3, G4, is in geometric progression.
-
If the function f:R➝R be given by f(x)=x2+2 and g(x)=2x, find fog and gof
-
Show that the function is \(f\left( x \right) =\begin{cases} \frac { \sin { x } }{ x } +\cos { x,\quad x\neq 0 } \\ 2,\quad \quad \quad x=0 \end{cases}\) continuous at x =0.
-
Consider the matrix A\(\alpha\)=\(\begin{bmatrix} cos \alpha & -sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}\)
Show that \(A _{\alpha}A_{\beta}=A_{(\alpha + \beta)}\) . -
There are 3 types of toy car and 2 types of toy train are available in a shop. Find the number of ways a baby can buy a toy car and a toy train?
-
Find the area of a triangle ABC in which ㄥA=600, b=4 cm and c=\(\sqrt { 3 } \) cm.
-
If log2x + log4x + log16x=\(\frac{7}{2}\), find the value of x.
-
Evaluate:\(cos^{-1}(-{1\over\sqrt{2}})\)
-
Simplify: \(\frac { 7! }{ 2! } \).
-
Simplify by rationalising the denominator \(\frac { 7+\sqrt { 6 } }{ 3-\sqrt { 2 } } \)
-
In a \(\triangle ABC,\) a = 3, b = 5 and c = 7. Find the values of cos A, cos B and cos C.
-
If p(A) denotes the power set of A, then find \(n(P(P(P(\phi)))).\)
-
If k > 0,then solve the inequation |x| ≤ K
-
If x = 1 is one root of two equation. x3 - 6x + 11x - 6 = 0 find the other roots.
-
Find sin (x - y) given that sin x = \(\frac{8}{17}\) with\(0 and cos y = \(-\frac{24}{25}\) with\(\pi
-
Show that the relation R on R defined as R={(a,b):a≤b} is reflexive and transitive but not symmetric.
-
Integrate the function with respect to x
\(\sqrt { (2x+1)^{ 2 }+9 } \) -
Given a = 8, b = 9, c = 10, find all the angles.
-
If A is a 3 × 4 matrix and B is a matrix such that both ATB and BAT are defined, what is the order of the matrix B?
-
If \(sin\theta=\frac{3}{5}\) and the angle θ is in the second quadrant, then find the values of other five trigonometric functions.
-
By taking suitable sets A, B, C, verify the following results:
A \(\times\) (B\(\cup \)C)=(A\(\times\)B) \(\cup \) (A\(\times\)C) -
If \(\cos { \left( \alpha -\beta \right) } +\cos { \left( \beta -\gamma \right) } +\cos { \left( \gamma -\alpha \right) } =\frac { -3 }{ 2 } \) then prove that \(\cos { \alpha } +\cos { \beta } +\cos { \gamma } =\sin { \alpha } +\sin { \beta } +\sin { \gamma } =0\)
-
Integrate the following with respect to x\(sin 2x\over a^2+b^2 sin^2x\)
-
Evaluate the following limits :
\(\underset{x\rightarrow2}{lim}{{1\over x}-{1\over2}\over x-2}\) -
Evaluate the following integrals\(\int e^x(sin \ x+cos \ x)dx\)
-
Separate the equations 5x2 + 6xy +y2 = 0.
-
Derive cosine formula using the law of sines in a \(\triangle ABC.\)
-
Evaluate \(\int { \frac { \left( { a }^{ x }+{ b }^{ x } \right) ^{ 2 } }{ { a }^{ x }{ b }^{ x } } } \)dx
-
A straight line L with negative slope passes through the point (9, 4) cuts the positive coordinate axes at the points P and Q. As L varies, find the minimum value \(|OP|+|OQ|\) of , where O is the origin.
-
Find the number of 4-digt numbers that can be formed using the digits 1,2,3,4,5 if no digit is repeated. How many of these will be even?
-
Prove that \({{cos\ 2\ x}\over{1+sin\ 2x}}=tan\left( {{\pi}\over{4}}-x \right)\)
-
Expand \({\left( 2x-{1\over 2x} \right)}^{4}.\)
-
What are the points on x-axis whose perpendicular distance from the line 4x + 3y =12 is 4?
-
Prove that \(\lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-{ e }^{ -x } }{ x } } =2\)
-
Find the principal value of tan-1\(\sqrt { 3 } \)
-
Let A and B be two points with position vectors 2\(\overrightarrow{a}\)+ 4\(\overrightarrow{b}\) and 2\(\overrightarrow{a}\) −8\(\overrightarrow{b}\). Find the position vectors of the points which divide the line segment joining A and B in the ratio 1:3 internally and externally.
-
If n(A\(\cap\)B)=3 and n(A\(\cup\)B) = 10 then find n(P(A\(\Delta \)B))
-
Using the mathematical induction, show that for any natural number n,\(\frac { 1 }{ 1.2 } +\frac { 1 }{ 2.3 } +\frac { 1 }{ 3.4 } +...+\frac { 1 }{ n(n+1) } =\frac { n }{ n+1 } \).
-
-
If \(y=\sqrt { \frac { 1+{ e }^{ x } }{ 1-{ e }^{ x } } } ,\) show that \(\frac { dy }{ dx } =\frac { { e }^{ x } }{ (1-{ e }^{ x })\sqrt { 1-{ e }^{ 2x } } } \)
-
Let A = {a, b, c, d}, B = {a, c, e}, C = {a, e}.
Show that A ∩ (B ∩ C) = (A ∩ B) ∩ C
-
-
Show that 4x2 + 4xy + y2 - 6x - 3y - 4 = 0 represents a pair of parallel lines.
-
Express each of the following as a product.
cos 35o - cos 75o -
Show that \(\begin{vmatrix} 2bc-a^2 & c^2 &b^2 \\ c^2 &2ca-b^2 &a^2 \\ b^2 & a^2 &2ab-c^2 \end{vmatrix}=\begin{vmatrix} a &b &c \\ b & c & a \\ c &a &b \end{vmatrix}^2\) .
-
Solve the equation \(8+9\sqrt{(3x-1)(x-2)}=3x^2-7x.\)
-
Let f and g be the two functions from R to R defined by f(x) = 3x - 4 and g(x) = x2+ 3. Find gof and fog.
-
If A is a square matrix such that A2=I, then find the simplified value of (A-I)3+(A+I)3-7A.
-
If \(sin x=\frac{4}{5}\) (in I quadrant) and \(cos\ y=\frac{-12}{13}\) (in II quadrant), then find (i) sin (x - y), (ii) cos (x -y).
-
Find the Co-efficient of x6 and the co -efficient of x2 in \(\left( { x }^{ 2 }-\frac { 1 }{ { x }^{ 3 } } \right) ^{ 6 }\)
-
Evaluate \(\int { \frac { dx }{ tanx+cotx+secx+cosecx } } \)
-
If y = tan-1\(({1+x\over 1-x}),find \ y'\)