MABS Institution
11th Business Maths Weekly Test - 1 ( Trigonometry )-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
Find the quadrants in which the terminal sides of the following angles lie.
-70c -
Convert \(\frac{1}{4}\)radians into degree
-
If tan x = 3/4 and II <x< 3II/2 then find the value of \(\sin\frac{x}{2}\) and \(\cos\frac{x}{2}\)
-
Prove that \(\tan { \left( { -225 }^{ o } \right) } \cot { \left( -{ 405 }^{ o } \right) } -\tan { \left( -{ 765 }^{ o } \right) } \cot { \left( { 675 }^{ o } \right) } =0\)
-
-
Prove that sin (A + 60°) + sin (A - 60°) = sin A.
-
Find the values of the following cos215 - sin2 15o
-
-
Show that \(\tan\left(\frac{\pi}{3}+x\right)\tan\left(\frac{\pi}{3}-x\right)=\frac{2\cos2x+1}{2\cos2x-1}\)
-
If sin (y + z - x), sin (z + x - y), sin (x + y - z) are in A.P., prove that tan x, tan y, tan z are also in A. P
-
If tan \(\alpha={{1}\over{7}},\sin\beta={{1}\over{\sqrt{10}}},\) Prove that \(\alpha+2\beta={{\pi}\over{4}}\) where \(0<\alpha<{{\pi}\over{2}}\) and \(0<\beta<{{\pi}\over{2.}}\)
-
-
If \(\sin { A } =\frac { 3 }{ 5 } \) , find the values of cos 3A and tan 3A.
-
if \(\cot { \alpha } =\frac { 1 }{ 2 } ,\sec { \beta } =\frac { -5 }{ 3 } \) where \(\pi <\alpha <\frac { 3\pi }{ 2 } \)and,\(\frac { \pi }{ 2 } <\beta <\pi \) find the value of \(\tan { \left( \alpha +\beta \right) } \) State the quadrant in which \(\left( \alpha +\beta \right) \) terminates.
-
-
Prove that sin(n+1)x sin(n+2) x+cos(n+1)xcos(n+2)x=cosx.