MABS Institution
11th Business Maths Monthly Test - 1 ( Trigonometry )-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Prove that \({ tan }^{ -1 }\left( \frac { 1 }{ 7 } \right) +{ tan }^{ -1 }\left( \frac { 1 }{ 13 } \right) ={ tan }^{ -1 }\left( \frac { 2 }{ 9 } \right) \)
-
Show that \(\frac { sin2\theta }{ 1+cos2\theta } =tan\theta \)
-
Evaluate \(\cot\left(\frac{-15\pi}{4}\right)\)
-
Find the degree measure corresponding to the following radian measure. \(\frac { 11\pi }{ 18 } \)
-
Evaluate\(\cos\left[\frac{\pi}{3}-\cos^{-1}\left(\frac{1}{2}\right)\right]\)
-
If tanA =\(\frac{1}{7}\) and tanB =\(\frac{1}{3}\), show that cos2A = sin4B
-
If tan(x + y) = 42 and x = tan–1(2), then find y
-
Convert the following into the product of trigonometric functions
sin7\(\theta\)-sin4\(\theta\) -
Prove that \(\frac{\sin5x+\sin3x}{\cos5x+\cos3x}=\tan4x\)
-
-
Express \(\tan ^{ -1 } \left( \frac { \cos x-\sin x }{ \cos x+\sin x } \right) ,0<x<\pi \), in the simplest form.
-
Prove that tan 4A tan 3A tan A + tan 3A + tan A - tan 4A = 0
-
-
Find the values of the following sin (-105)°
-
If tan A = m tanB, prove that \(\frac { sin(A+B) }{ sin(A-B) } =\frac { m+1 }{ m-1 } \)
-
Prove that \(2\sin ^{ 2 }{ \frac { \pi }{ 6 } } +\ cosec ^{ 2 }{ \frac { 7\pi }{ 6 } } \cos ^{ 2 }{ \frac { \pi }{ 3 } } =\frac { 3 }{ 2 } \)
-
Express each of the following as the product of sine or cosine.
cos2ፀ-cosፀ -
If cosA =\(\frac{4}{5}\)and cosB =\(\frac{12}{13}\),\(\frac{3\pi}{3}\)\(\pi\), find the value of sin(A-B)
-
If \(\sin { \theta \frac { 3 }{ 5 } } \), \(\tan { \phi } =\frac { 1 }{ 2 } \)and \(\frac { \pi }{ 2 } <\theta <\pi<\varphi <\frac { 3\pi }{ 2 } \) , then find the value of \(8\tan { \theta } -\sqrt { 5 } \sec {\varphi } \)
-
Prove that \({ cot }^{ -1 }\left[ \frac { \sqrt { 1+sinx } +\sqrt { 1-sinx } }{ \sqrt { 1+sinx } -\sqrt { 1-sinx } } \right] =\frac { x }{ 2 } \) where \(x\in \left( 0,\frac { \pi }{ 4 } \right) \)
-
Prove that cos22x-cos26x = sin 4x.sin 8x
-
If cosA+cosB=\(\frac { 1 }{ 2 } \) and sinA+sinB=\(\frac { 1 }{ 4 } \), prove that tan\(\left( \frac { A+B }{ 2 } \right) =\frac { 1 }{ 2 } \)
-
-
If \(\sin A=\frac35\) where \(0<A<\frac { \pi }{ 2 } \) and \(cosB=\frac { -12 }{ 13 } ,\pi <A<\frac { 3\pi }{ 2 } \) find the value of
\(\tan(A-B)\) -
Find the value of tan \(\left( {{\pi}\over{8}}\right).\)
-
-
Prove that \(\frac{\cos4x+\cos3x+\cos2x}{\sin4x+\sin3x+\sin2x}=\cot3x\)
-
Prove that \(\frac { 4tan\ x(1-{ tan }^{ 2 }x) }{ 1-6{ tan }^{ 2 } x+{ tan }^{ 4 } x } =tanx\)