MABS Institution
11th Business Maths Monthly Test - 1 ( Differential Calculus )-Aug 2020
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Find the second order derivative of the following functions with respect to x, x sin x
-
Find \(\frac{dy}{dx}\) if x = at2, y = 2at
-
If f(x) = x and and g(x) = |x|, then find (f - g)(x)
-
Differentiate \({ x }^{ \frac { 2 }{ 3 } }\) from first principles
-
Differentiate the following functions with respect to x, x2 sin x
-
If f(x) = \(\frac{x-1}{x+1}\), 0
\(-\frac{1}{x}\) -
If \(f\left( x \right) =\begin{cases} \frac { x-\left| x \right| }{ x } \quad ifx\neq 0 \\ \quad 2\quad \quad ifx=0 \end{cases}\) , then show that \(\underset { x\rightarrow 0 }{ lim } f\left( x \right) \) does not exist.
-
If 4x+3y=log(4x-3y), then find \(\frac { dy }{ dx } \).
-
Evaluate the following \(\lim _{ x\rightarrow \infty }{ \frac { 2x+5 }{ { x }^{ 2 }+3x+9 } } \)
-
Draw the graph y = 9 - x2
-
-
If x = \(a\ \theta\) and \(y=\frac{a}{\theta}\), then prove that \(\frac{dy}{dx}+\frac{y}{x}=0\)
-
Differentiate the following with respect to x. \(\frac { { x }^{ 2 }+x+1 }{ { x }^{ 2 }-x+1 } \)
-
-
Find \(\frac{dy}{dx}\) if x = 15(t - sin t); y = 18(1 - cos t).
-
Evaluate the following \(\lim _{ x\rightarrow a }{ \frac { { x }^{ \frac { 5 }{ 8 } }-{ a }^{ \frac { 5 }{ 8 } } }{ { x }^{ \frac { 2 }{ 3 } }-a^{ \frac { 2 }{ 3 } } } } \)
-
Show thatf(x) =|x| is continuous at x = 0.
-
Evaluate the following \(\lim _{ x\rightarrow 2 }{ \frac { { x }^{ 3 }+2 }{ x+1 } } \)
-
Evaluate \(\begin{matrix} \underset { x\rightarrow 1 }{ lim } & \frac { { x }^{ 7 }-2{ x }^{ 5 }+1 }{ { x }^{ 3 }-{ 3x }^{ 2 }+2 } \end{matrix}\)
-
Draw the graph of the following function f(x)=|x-2|
-
if y = 2 sin x + 3 cos x, then show that y2 + y = 0
-
A group of students wish to charter a bus for an educational tour which can accommodate atmost 50 students. The bus company requires at least 35 students for that trip. The bus company charges Rs 200 per student up to the strength of 45. For more than 45 students, company charges each student Rs 200 less \(\frac{1}{5}\) times the number more than 45. Consider the number of students who participates the tour as a function, find the total cost and its domain.
-
Examine the following functions for continuity at indicated points
\(f(x)=\begin{cases} \frac { { x }^{ 2 }-4 }{ x-2 } ,\quad if\quad x\neq 2 \\ \quad \quad \quad 0,\quad \quad if\quad x=2 \end{cases}at\quad x=2\) -
Draw the graph of f(x) = ax, \(a\ne 1\) and a > 0
-
Draw the graph of the following function f(x)=e-2x
-
-
If the function \(f\left( x \right) =\begin{cases} 6ax+3b\quad if\quad x>1 \\ ax-2b\quad if\quad x<1\quad is\quad continuous\quad at\quad x=1 \\ 15\quad if\quad x=1 \end{cases}\) Find the value of a and b.
-
Differentiate: \(\frac { sinx+cosx }{ sinx-cosx } \)with respect to 'x'
-
-
Examine the following functions for continuity at indicated points
\(f(x)=\begin{cases} \frac { { x }^{ 2 }-9 }{ x-3 } ,if\quad x\neq 3 \\ \quad \quad \quad \quad 6,\quad \quad \quad if\quad x=3 \end{cases}\) at x =3